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Abstract-The state of equilibrium of plane bars and frames is formulated with finite deflections and shear
deformations taken into consideration. The derivation is based on continuum solid mechanics, with
integration applied to the original undeformed length.

This paper presents a brief resume of a geometrically nonlinear analysis of plane slender bars and
frames [1, 2] founded on continuum solid mechanics derivation, incorporating moderate shear
deformations and allowing for finite displacements. Expressions for deformations are exact
within known engineering assumptions, valid in case of slender bars.

The bar is regarded as one dimensional continuum, initially straight in the reference state.
Each point along its deformed axis is characterized by Uo and Wo (displacement components of
the geometrical axis displacement vector U = R - r in terms of the position vectors in the
deformed and undeformed states respectively), also by K (= d'l'/ds) curvature, in terms of the
section rotation.

The state of equilibrium of the deformed bar, under the action of end forces H, V, M and
distributed conservative load f = /xi +/zk, is governed by the variational equation (Fig. 1):

- JJJ(TIIl)1/li diJ - HAl)uo.. +HBl)UOB - VAl)wo.. + VBl)WOB +MAl) 'I'A - MBl)'I'B +Lf· 8u dL
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= O. (1)

Equation (1) is transformed to the undeformed volume employing the principle of mass
conservation, and the components of the stress tensor (TIl resolved to components with physical
dimensions (T(ij)[2, 3].

The Lagrangian strain tensor 1/11, given in terms of the covariant components of the metric
tensors Glj and gil (in the deformed and undeformed states respectively) is actually in terms of
the displacement derivatives being derived from the position vector R in the deformed state:

R = [(x + uo) - z sin 'I']i + [wo +z cos'l']k. (2)

Thus, equation (1) yields three nonlinear differential equations of equilibrium and six
boundary conditions for the three unknown displacements. The equations are transformed to
polynomial form through a suitable mathematical substitution [2,3].

Establishment of force equilibrium and displacement compatibility at a joint of two bars
permits the consideration of several bars to form a frame analysis [2,3].

Numerical solution is obtained by transforming the nonlinear polynomial differential
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Table I

Increase in
deflection

q/' [fL, due to shear
[Tl ~-l[.'!:]a = EI Kmdx deformations - a I ITlllX

0·5 0·05207 X 10-2 0·00651
2·50%

0·000103 0·013018
(0'05207) (0'00667) (0·000108) (0'013344)

1·0 0·10411 0·01301
2·50%

0·000410 0·013011
(0'10411) (0'01334) (0'000432) (0'013336)

2·0 0·20786 0·02596
2·48%

0·001634 0·012980
(0,20784) (0'02660) (0·001722) (0,013302)

3·0 0·31091 0·03878
2-46%

0·003652 0·012928
(0·31082) (0·03974) (0·003847) (0'013246)

4·0 0·41291 0·05143
2·43%

0·006431 0·012857
(0'41271) (0,05268) (0·006771) (0,013169)

5·0 0·51358 0·06384
2·39%

0·009930 0·012768
(0'51319) (0'06536) (0·010447) (0,013073)

6·0 0·61265 0·07597
2·34%

0·014096 0·012662
(0'61199) (0·07775) (0'014819) (0·012958)

7·0 0·70986 0·08779 0·018872 0·012541
8·0 0·80504 0·09926 0·024197 0·012407
9·0 0·89804 0·11035 0·030007 0·012261

10·0 0·98872 0·12105 0·036239 0'Om05
11·0 1·07700 0·13136 0·042830 0·011941
12·0 1·16284 0·14125 0·049721 0·011771
13·0 1·24621 0·15074 0·056856 0·011595
14·0 1·32712 0·15983 0·064185 0·011416
15·0 1·40565 0·16852 0·071668 0·011235
16·0 1·48163 0·17682 0·079242 0·011051
17·0 1·55539 0·18476 0·086897 0·010868
18·0 1·62678 0·19233 0·094580 0·010685
19·0 1·69594 0·19955 0·102268 0·010503
20·0 1·76294 0·20644 0·109939 0·010322

tFigures in parentheses represent computed values with shear deformations taken into
consideration.
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equations to simultaneous nonlinear algebraic equations. Newton Raphson's iterative procedure
for solution of a set of nonlinear algebraic equations is employed proving to be a powerful tool
for solution of a large number of unknowns.

The contribution of shear deformations is small in bars and even smaller in frames. This
contribution diminishes with increased nonlinearity. Convergence of the mathematical procedure
is obtained for very large displacements (up to about 40 per cent of the span in several occasions)
and for relative smaller values, however, when shear deformations are considered.

NUMERICAL EXAMPLE

Simply supported, uniformly loaded beam AB (Fig. 2) (181 points grid) is loaded by uniformly
distributed load q. Maximum deflection at mid point is Wmax = f3a where a = qI3/EI. Wmax , Kmax

and uB-horizontal movement at support B, are listed in Table 1. Contribution of shear
deformations is indicated in parallel (Table 1).
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